
### 941. Oxazole Cyanine and meroCyanine Dyes, and Intermediates.

### By R. A. JEFFREYS.

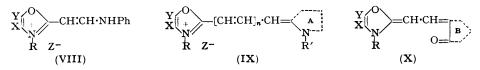
A direct synthesis of 2-methyl-4-(or 4:5-di-)substituted oxazoles from phenacyl bromides and ammonium acetate has been achieved. The syntheses due to Japp and Murray and to Davidson *et al.* have been extended to 4:5-dialkyl- and 4-aryl-oxazoles respectively. These oxazoles, together with 2-methyloxazole, have been quaternised and converted into cyanine and *merocyanine* dyes. A comparison of the dye absorption maxima throws some light on to the spatial configuration of 4- and 5-aryl substituents in the oxazole nucleus. In the Davidson synthesis of diaryloxazoles, prolonging the reaction period slowly converts the oxazoles into the corresponding glyoxalines.

IN parallel with an investigation into the chemical and photographic properties of substituted thiazole dyes (Knott, J., 1952, 4099) it was considered of value to prepare and examine the 4 : 5-disubstituted oxazole analogues. The cyanines and *mero*cyanines, which were also useful as intermediates for more complex trinuclear dyes (cf. B.I.O.S. Final Report No. 1355, Item No. 22), proved to be strong sensitisers.

The preparation of 2-methyloxazole by Cornforth and Cornforth (J., 1947, 96) enabled us to derive the simplest dyes of the series. A general oxazole synthesis by dehydrating the related  $\alpha$ -acylamino-carbonyl compounds (Zinsstag and Prijs, *Helv. Chim. Acta*, 1949, **32**, 147; Gabriel, *Ber.*, 1910, **43**, 1283) was used to synthesise 5-aryl-2-methyloxazoles. The 4- and 4 : 5-substituted analogues were obtained by modifications of a general reaction between  $\alpha$ -acetoxy- (I),  $\alpha$ -bromo- (II), and  $\alpha$ -hydroxy-ketones (III) with ammonium acetate (Davidson, Weiss, and Jelling, *J. Org. Chem.*, 1937, **2**, 328), acetamide (Blümlein, *Ber.*, 1884, **17**, 2578; Lewy, *Ber.*, 1887, **20**, 2576; 1888, **21**, 924), or acetonitrile (Japp and Murray, *J.*, 1893, **63**, 469). The procedure of Davidson *et al.* and of Japp and Murray was extended to the synthesis of a 2 : 4-substituted and a 2 : 4 : 5-trialkyl-oxazole respectively. As an alternative to Davidson's method oxazoles were obtained from phenacyl bromides (II; X = aryl, Y = H or aryl) and ammonium acetate in acetic acid, the yields improving to 80-90% for (II; Y = aryl).



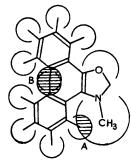
In attempts to prepare a possible intermediate acetiminodesyl ether hydrochloride (IV;  $X = Y = C_6H_5$ ), hydrogen chloride was passed into a mixture of benzoin and acetonitrile according to Pinner's synthesis (*Ber.*, 1878, **11**, **6**, 152) of simple imino-ethers. Various solvents were used, including benzene and acetic acid. However, even prolonged boiling of the reagents in acetic acid failed to produce the intermediate.


As the reaction of phenacyl bromide with amides has been shown by Robinson  $(I_{..}1909)$ **95**, 2167) to give 2 : 4-substituted oxazoles, the similar reaction between phenacyl bromide and ammonium acetate might be expected to result in substitution in the same positions. This was confirmed in the cases of 4-p-methoxyphenyl-2-methyl- and 4-p-methoxyphenyl-2-methyl-5-phenyl-oxazole which were prepared by the latter method, and also by that of Davidson et al., whose synthesis is unambiguous and allows ring closure resulting in 4-pmethoxyphenyl substitution. An intermediate amino-compound (V; X = Y = 2'-furyl) of the type suggested by Wiley (Chem. Reviews, 1945, 37, 410) was isolated from the preparation of 4: 5-di-2'-furyl-2-methyloxazole from 2: 2'-furoin acetate and ammonium acetate after 1 hour's refluxing in acetic acid. This was the only case in which evidence of an intermediate amine was obtained. In an attempt to prepare 2-methyl-4:5-di-2'thienyloxazole by an analogous reaction, the reaction time in acetic acid was increased to 2 hours, to reduce the amount of intermediate amine formed. The products, which were precipitated together as an oil when the acid reaction solution was poured into water, proved to be the required oxazole and 2-methyl-4: 5-di-2'-thienylglyoxaline in 28 and 18% yield respectively. Davidson et al. have shown that glyoxalines can be obtained in low yields by making alkaline the aqueous solution into which the acetic acid reaction mixture has been poured. These authors have put forward a mechanism of formation via intermediates (V), (VIIa) and (VIIb), giving as evidence the formation of a glyoxaline

$$\begin{array}{c} Y \cdot C \cdot OH & Y \cdot CO \\ (VIIa) & X \cdot C \cdot NH \cdot COR & X \cdot CH \cdot NH \cdot COR & (VIIb) \end{array}$$

from (VIIb; R = H) and ammonia. It has now been found that by prolonging the reaction period of benzoin acetate and ammonium acetate in acetic acid, the yields of oxazole and glyoxaline after 1 hour are 85% and 8%, and after 8 hours are 80 and 13.7%. Further, when 2-methyl-4: 5-diphenyloxazole is heated under reflux in acetic acid with ammonium acetate for 4 days, a 37% yield of 2-methyl-4: 5-diphenylglyoxaline is obtained. These facts indicate that, although there may be some initial formation from acyclic intermediates, longer reaction periods favour glyoxaline formation by fission of the oxazole ring, and further nitrogen substitution. Examples of glyoxalines produced from oxazoles and ammonia are known (Lewy, *Ber.*, 1888, **21**, 2192; Japp and Murray, *loc. cit.*; Minovici,

Ber., 1896, **29**, 2097), but the conditions of formation were far more vigorous, involving sealed tubes at high temperatures.


All the oxazole bases prepared above were quaternised with alkyl toluene-p-sulphonates and the mainly water-soluble products condensed with ethylisoformanilide (cf. Knott, J., 1946, 120) to give 2-2'-anilinovinyloxazole salts (VIII), or treated directly with dye intermediates. Although 2:2'-anilinovinyl-4-aryloxazole quaternary salts did not fluoresce, 5-aryl- and 4:5-di-aryl analogues glowed in daylight, and emitted an intense yellow-green fluorescence in ultra-violet light. Preparation of *merocyanines* (X) and symmetrical carbocyanines were carried out by acetylation of the anilinovinyl intermediates, and condensation of the product with dye intermediates according to well-known methods.



Many of the 4:5-diaryl substituted dyes were more soluble in organic solvents than were corresponding dyes derived from benzoxazole, notwithstanding their increased molecular weight, and there was also a marked increase in the solubility of 4-aryl-substituted dyes compared with their 5-aryl isomers. The absorption maxima of isomeric dyes also varied with the position of substitution in the oxazole ring.

4-Aryl substitution of oxazole dyes increases the wave-lengths of the absorption maxima appreciably, and both 5-aryl and 4:5-diaryl substitution cause very marked increases, the effects in the last two cases being of the same order for corresponding dyes. Thus, for dyes of types (IX and X), the bathochromic shift on 4-phenyl substitution is 1-9 m $\mu$ , and for the 5-phenyl and 4:5-diphenyl analogues it is 22-29 and 20-30 m $\mu$  respectively. These results imply that the -M effect of the 5-aryl group has a considerable contribution to make towards the resonance hybrid of the molecule,

whereas the 4-aryl group has only a slight influence, which is almost entirely masked in the 4:5-substituted dyes. One may interpret the variations by supposing that the 5-aryl group is coplanar with the oxazole ring, and the 4-aryl group is crowded out by a twisting of the C-C bond between the aryl ring and the oxazole ring, as is demonstrable in models. The crowded areas Aand B are shown in the Figure. Support for this reasoning is derived by observation that the values for the absorption maxima of dyes of type (IX; n = 0) and of symmetrical carbocyanines are the same for 4-methyl or 4-phenyl derivatives (Brooker, Keyes, and White, J. Amer. Chem. Soc., 1935, 57, 2492; Sachi Taki, Rep. Sci. Res. Inst., Japan, 1949, 25, 224). Also the absorption maximum



of the carbocyanine from planar benzoxazole is 485 m $\mu$  (Hamer, J., 1934, 2796), which is closer to the value for the corresponding 5-phenyloxazole dye (500 m $\mu$ ) than to that for its 4-phenyl isomer (460 m $\mu$ ).

As would be expected if the molecule is non-planar, substituents such as 4-methoxy or 3:4-dimethoxy in the 4-aryl ring produce no marked difference in  $\lambda_{max,}$ , and even a 4-dimethylamino-group causes an average bathochromic shift of only 9 m $\mu$ .

Kiprianov and Ushenko (J. Gen. Chem., U.S.S.R., 1950, 20, 139) have pointed out that the solubility effect mentioned previously is associated with non-planarity of the dye molecule. They have also stated that other phenomena which may be observed include decreased stability towards acids and alkalis, ineffective photographic sensitivity, and reduced dye intensity. None of these properties is exhibited by the present dyes since the non-planarity is extra-nuclear and the main resonance system is undistorted.

Of the other oxazole dyes examined, the effect of 4:5-di-2'-furyl and 4:5-di-2'-thienyl groups was of the same order as that of 4:5-diphenyl, whereas 4:5-di-2'-naphthyl increased the wave-length of absorption maxima appreciably compared with that of its 4:5-diphenyl analogues.

#### EXPERIMENTAL

(Analyses were by Drs. Weiler and Strauss, Oxford. M. p.s are uncorrected.)

 $\beta$ -Naphthoin Acetate.—To a mixture of  $\beta$ -naphthoin (Fulton and Robinson, J., 1939, 200) (12.6 g.), acetic acid (10 c.c.), and acetic anhydride (10 c.c.) was added sulphuric acid (1 c.c.), with cooling and shaking. The mixture was warmed for 10 minutes on the steam-bath, cooled, and poured into water (120 c.c.). An oil separated, which was extracted with ether. This solution was dried (Na<sub>2</sub>SO<sub>4</sub>) and used for preparation of 2-methyl-4 : 5-di-2'-naphthyloxazole.

2: 2'-Thienoin Acetate.—2: 2'-Thienoin (Cardon and Lankelma, J. Amer. Chem. Soc., 1948, **70**, 4248) (8.6 g.) and acetic anhydride (35 c.c.) were refluxed for 1 hour. The solvent was distilled off under a vacuum, and the *product* crystallised on addition of a small amount of alcohol to the gum. It recrystallised as plates (9.5 g., 93%), m. p. 103°, from ethanol (Found : S, 23.9.  $C_{12}H_{10}O_3S_2$  requires S, 24.0%).

Attempts to Prepare  $\alpha$ -1-Iminoethoxydeoxybenzoin Hydrochloride (IV; X = Y = Ph).— Benzoin (10.6 g., 1 mol.) and acetonitrile (2.05 g., 1 mol.) in ether (100 c.c.) were saturated with hydrogen chloride and kept overnight. The solvent was removed, leaving benzoin (10.4 g.) which, recrystallised from ethanol, had m. p. 136°. Use of benzene and refluxing gave the same result.

Passing hydrogen chloride into the reagents in boiling acetic acid (100 c.c.) for 3 hours and removing the solvent produced a gum, which on extraction with ether gave benzoin acetate (7 g.) which, recrystallised from methanol and light petroleum, had m. p.  $82^{\circ}$ .

4:5-Substituted 2-Methyloxazoles.—Method A (cf. Davidson, Weiss, and Jelling, J. Org. Chem., 1937, 2, 328). An aryloin acetate (1 mol.), ammonium acetate (5 mols.), and acetic acid (1 l.) were refluxed for 1 hour, and the solution was cooled and poured into water (3.8 l.). The oil which separated was extracted with benzene, washed with aqueous sodium carbonate, and dried (Na<sub>9</sub>SO<sub>4</sub>). After removal of the benzene, the oxazole was distilled under a vacuum.

Method B. A substituted  $\omega$ -bromoacetophenone (1 mol.), ammonium acetate (4 mols.), and acetic acid (1.5 l.) were refluxed for 1.5 hours, and the solution was cooled and poured into water (5 l.). The oxazole was worked up as in Method A.

Method C (cf. Japp and Murray, J., 1893, **63**, 469). A mixture of an acyloin or aryloin (1 mol.) and acetonitrile (2.6 mols.) was added slowly to sulphuric acid (500 c.c.), at <60° (cooling). The mixture was left overnight, then poured into water and crushed ice (3.5 l.), made alkaline with sodium carbonate, and extracted with chloroform. After drying (Na<sub>2</sub>SO<sub>4</sub>), the chloroform was distilled off, and the oxazole was distilled if an oil, or recrystallised if a solid.

2-Amino-1: 2-di-2'-furylvinyl Acetate.—In the preparation of 4:5-di-2'-furyl-2-methyloxazole by Method A, after 2:2'-furoin acetate (Fisher, Annalen, 1882, 211, 220) had been refluxed with ammonium acetate in acetic acid for 1 hour and the solution poured into water, a solid separated. This was dissolved in ether, and hydrogen chloride passed into the solution. An alcoholic solution of the hydrochloride thus formed was dropped into aqueous sodium carbonate. The acetate so formed was filtered off and crystallised from benzene as a buff powder (2 g.), m. p. 136° (Found: C, 62·0; H, 4·6; N, 6·1.  $C_{12}H_{11}O_4N$  requires C, 62·0; H, 4·7; N, 6·0%).

Hydrogen chloride was passed into the benzene filtrate, precipitating a white hydrochloride. This was crystallised from ethanol-ether, dissolved in alcohol, and dropped into aqueous carbonate solution. 4:5-Di-2'-furyl-2-methyloxazole separated as a buff granular solid.

2-Methyl-4: 5-di-2'-thienylglyoxaline.—Pouring the di-2'-thienyloxazole reaction solution (Method A, 2 hours' reflux) into water gave an oil, which was dissolved in ether, dried, and precipitated as hydrochloride. This solid was dissolved in alcohol, and poured into aqueous carbonate solution, liberating a mixture of glyoxaline and oxazole as an oil. On extraction with cold benzene, the oxazole dissolved, leaving as a solid the glyoxaline, which crystallised from benzene as pale grey-brown needles, m. p. 188° (18%) (Found: C, 58.5; H, 4.2; N, 11.4; S, 25.9.  $C_{12}H_{10}N_2S_2$  requires C, 58.6; H, 4.1; N, 11.4; S, 26.0%).

Reactions of Benzoin Acetate and 2-Methyl-4: 5-diphenyloxazole with Ammonium Acetate.— (a) Benzoin acetate (28.4 g., 1 mol.) and ammonium acetate (38.5 g., 5 mols.) in acetic acid (100 c.c.) were refluxed for 1 hour, and then poured into water (380 c.c.). The oil which separated was extracted with benzene, washed with aqueous sodium carbonate, and dried (Na<sub>2</sub>SO<sub>4</sub>). After removal of the benzene by distillation, 2-methyl-4: 5-diphenyloxazole distilled (b. p. 227—228°/12 mm.) in 85% yield. Making the aqueous layer alkaline precipitated 2-methyl-4: 5-diphenylglyoxaline (1.9 g., 8.1%), which formed needles, m. p. 239°, from ethyl acetate. (b) When the reaction period was 8 hours, the yields of oxazole and glyoxaline were  $18\cdot 8$  g. (80%) and  $3\cdot 2$  g.  $(13\cdot 7\%)$  respectively.

|                                                   |                                     |                                                       |                 | •                         | · · ·                                           |                   |                |  |
|---------------------------------------------------|-------------------------------------|-------------------------------------------------------|-----------------|---------------------------|-------------------------------------------------|-------------------|----------------|--|
| x                                                 | Y                                   | Method of prepn.*                                     | Yield<br>(%)    | M. p. or<br>b. p. (°/mm.) | Formula                                         | Found:<br>N, %    | Reqd.:<br>N, % |  |
| Н                                                 | Н                                   | D                                                     | 74              | 87                        |                                                 |                   |                |  |
| Ph                                                | н                                   | E                                                     |                 | 46                        |                                                 |                   |                |  |
| p-MeO·C <sub>6</sub> H <sub>4</sub>               | Н                                   | $\left\{ \begin{array}{c} A\\ B \end{array} \right\}$ | 49<br>42 a      | 100—101 °                 | $\mathrm{C_{11}H_{11}O_2N}$                     | 7.3               | 7.4            |  |
| н                                                 | $\mathbf{Ph}$                       | $\mathbf{F}$                                          | 33              | <b>58</b>                 |                                                 |                   |                |  |
| н                                                 | p-MeO·C <sub>6</sub> H <sub>4</sub> | F<br>C                                                | 16              | 94 f                      | $C_{11}H_{11}O_2N$                              | 7.5               | 7.4            |  |
| Pr <sup>n</sup>                                   | Pr <sup>n</sup>                     | С                                                     | 31 5            | 80/16 <sup>g</sup>        | C <sub>10</sub> H <sub>17</sub> ON              | 8.5               | <b>8</b> ·4    |  |
| 2'-Furyl                                          | 2'-Furyl                            | Α                                                     | 29              | 56-58                     | C <sub>12</sub> H <sub>9</sub> O <sub>3</sub> N | $\cdot 6 \cdot 2$ | 6.5            |  |
| 2'-Thienyl                                        | 2'-Thienyl                          | A                                                     | <b>28</b>       | oil                       |                                                 |                   |                |  |
| Ph                                                | Ph                                  | ∫ A                                                   | 85              | 28                        |                                                 |                   |                |  |
|                                                   |                                     | ۱c                                                    | 85              |                           |                                                 |                   |                |  |
| β-C <sub>10</sub> H <sub>7</sub>                  | β-C <sub>10</sub> H <sub>7</sub>    | Α                                                     | 49              | 6972 i                    |                                                 |                   |                |  |
| p-MeO·C <sub>6</sub> H <sub>4</sub>               | Ph                                  | { <u>A</u>                                            | 77              | 227 - 228/12              | $C_{17}H_{15}O_{2}N$                            | $5 \cdot 2$       | 5.3            |  |
| •                                                 | -                                   | ۱B                                                    | 87 °            |                           |                                                 |                   |                |  |
| p-NMe <sub>2</sub> ·C <sub>6</sub> H <sub>4</sub> | $\mathbf{Ph}$                       | C                                                     | 60              | 108 <sup>j</sup>          | $C_{18}H_{18}ON_2$                              | 9.9               | 10.1           |  |
| $3:4:1-(MeO)_2C_6H_3$                             | Ph                                  | в                                                     | 85 <sup>d</sup> | 16 <sup>k</sup>           |                                                 | -                 |                |  |
|                                                   |                                     |                                                       |                 |                           |                                                 |                   |                |  |

TABLE 1. 4: 5-Substituted 2-methyloxazoles (VI).

\* A, B, C, see text; D, Cornforth and Cornforth; E, Blümlein; F, Zinsstag and Prijs, locc. cit. • From  $\omega$ -bromo-p-methoxyacetophenone (Cowper and Davidson, Org. Synth., **19**, 24). • From n-butyroin (Snell and McElvain, Org. Synth., **13**, 24). • From a-bromo-4-methoxydeoxybenzoin (Meisenheimer and Jochelson, Annalen, 1907, **355**, 292). • From a-bromo-3: 4-dimethoxydeoxybenzoin (Kaufmann and Muller, Ber., 1918, **51**, 129). • Needles, from light petroleum. • Pyridine-like odour. \* Buff granular solid, from light petroleum. • Amorphous, from ligroin. The hydrochloride forms prisms (from methanol-ether), m. p. 220° (Found: Cl, 9.4. C<sub>21</sub>H<sub>17</sub>ON,HCl requires Cl, 9.6%). • Needles, from ethanol. \* The hydrochloride forms needles (from ethanol-ether), m. p. 179° (decomp.) (Found: N, 4.2. C<sub>18</sub>H<sub>17</sub>O<sub>3</sub>N,HCl requires N, 4.2%).

(c) 2-Methyl-4: 5-diphenyloxazole (23.5 g., 1 mol.) and ammonium acetate (38.5 g., 5 mols.) in acetic acid (100 c.c.) were refluxed for 4 days, giving 12.3 g. (52.5%) of oxazole and 8.7 g. (37.2%) of glyoxaline.

4-p-Dimethylaminophenyl-2-methyl-5-phenyloxazole Ethoperchlorate.—4-p-Dimethylaminophenyl-2-methyl-5-phenyloxazole (27.8 g.) and ethyl toluene-p-sulphonate (20.0 g.) were heated together at 100° for 2 hours. On cooling the mixture solidified. It was dissolved in a little ethanol and poured into aqueous potassium perchlorate solution. The quaternary salt separated and was recrystallised several times from ethanol-ether, being obtained as pale buff needles, m. p. 162° (Found : N, 6.9; Cl, 8.5.  $C_{20}H_{23}O_5N_2Cl$  requires N, 6.9; Cl, 8.7%). The same oxazole (2.78 g., 1 mol.) and ethyl toluene-p-sulphonate (4.0 g., 2 mols.) were heated at 140° for 1 hour. The residual diquaternary salt was ground with ether to give a white deliquescent powder which was not further purified. Methyl toluene-p-sulphonate gave a similar product.

2-2'-Anilinovinyl-4: 5-diphenyloxazole Ethotoluene-p-sulphonate.—2-Methyl-4: 5-diphenyloxazole ethotoluene-p-sulphonate (8.7 g., 1 mol.) and ethylisoformanilide (3.3 g., 1.1 mols.) were heated at 140° for 1 hour (cf. Knott, *loc. cit.*). Ethanol was evolved, and on cooling, the thick oily *product* solidified. It recrystallised from ethanol-ether as fluorescent lemon-yellow needles, m. p. 209° (10 g.) (Found: N, 5.2.  $C_{32}H_{30}O_4N_2S$  requires N, 5.2%). The other 2-2'-anilinovinyl quaternary salts listed in Table 2 were prepared by the same procedure.

4: 5-Substituted 2-2'-Acetanilidovinyloxazole Ethotoluene-p-sulphonates.—The anilinovinyl quaternary salts were acetylated by an excess of boiling acetic anhydride for 0.25—4 hours. The solvent was then distilled off at the pump, and the gummy products were used to prepare dyes.

2-p-Dimethylaminostyryl-4: 5-diphenyloxazole Ethoperchlorate.—2-Methyl-4: 5-diphenyloxazole ethotoluene-p-sulphonate  $(2\cdot 2 \text{ g.})$  and p-dimethylaminobenzaldehyde  $(0\cdot 8 \text{ g.})$  were dissolved in ethanol (12 c.c.), and a drop of piperidine was added. After 1 hour's heating on the steam-bath the solution was poured into aqueous potassium perchlorate. An oily salt separated, and the aqueous layer was decanted. On addition of a little methanol, the oil solidified; it

|                                        | <b></b>                | <b>,</b>                                                                                                                       |                                  |                                                                                                                                                                                                                                                     |                 |                                                          |                                                   |                      |                                                    | ide                                                                                                                                                                     |                                                               |       | ; 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                             |                                                                                                                                  |                       |                                                                                              | d.,                                                               |                                                                  |                                        | ÷.                                                           | 0                                                                                                                                     | -          |
|----------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------|---------------------------------------------------|----------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------|
|                                        | Reqd.                  | 7.3                                                                                                                            | 2.2                              | 6·1<br>5·7                                                                                                                                                                                                                                          | 1 Y             |                                                          | 0.4<br>4.4                                        | 4.9                  | 4.7                                                | rmanil<br>•5%                                                                                                                                                           |                                                               | L (T  | 1.95<br>%<br>7-95<br>8-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23-9<br>5-1                   | 5.2<br>7.3<br>35.4                                                                                                               |                       |                                                                                              | 2                                                                 | 7.3                                                              | 5.1<br>5.1                             |                                                              | 9.4<br>0.4<br>1.7                                                                                                                     |            |
|                                        | Found:<br>N. %         | 7.3                                                                                                                            | 5.6                              | 6.1<br>5.5                                                                                                                                                                                                                                          | r.)             | 0 0 1<br>0 0 1                                           | 0.4<br>5.5                                        | 5.0                  | 4.7                                                | did not react with ethylisoformanilide<br>Found: S, 17-4. Reqd.: S, 17-5%.                                                                                              |                                                               |       | round,<br>%<br>N, 7·9<br>CI, 8·5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | $ \begin{array}{c} 5.1 \\ 35.2 \\ 35.2 \end{array} $                                                                             |                       |                                                                                              | Found,<br>%                                                       | CI, 7:3                                                          | 2.0.2<br>2.0.2<br>2.0.2                | N, 4-4                                                       | N, 4-0<br>N, 3-7<br>4-8                                                                                                               | 0 F (10)   |
|                                        | щ                      |                                                                                                                                | N <sup>2</sup><br>N <sup>2</sup> | ນູນ<br>ເ                                                                                                                                                                                                                                            | 5               | ູ້ທີ່                                                    | ູ<br>ເບັ                                          | N_S                  | U.                                                 | th eth<br>Reqd.                                                                                                                                                         | te).                                                          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | źźr                                                                                                                              |                       | tes.                                                                                         | ıla                                                               | N <sup>2</sup> C                                                 | N <sup>2</sup> CI                      | sN2CI                                                        | N2CI                                                                                                                                  |            |
|                                        | Formula                | H <sub>22</sub> O <sub>4</sub> N                                                                                               | H <sub>s</sub> o,                | C26H2604N2S<br>C27H2605N2S                                                                                                                                                                                                                          |                 | $C_{28}^{H_{26}}H_{26}^{H_{26}}O_{4}^{H_{25}}N_{25}^{O}$ | П3004<br>Н3404<br>Г                               | H <sub>32</sub> 051  |                                                    | act wi<br>17:4.                                                                                                                                                         | 2-quinoline)                                                  |       | Formula<br>H1,05N2<br>H2705N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0°N2I                         | 0 <sup>N</sup> 1<br>0NJ1<br>0NJ1                                                                                                 |                       | chlorai                                                                                      | ŀormula                                                           | C <sub>25</sub> H <sub>25</sub> O <sub>6</sub> N <sub>2</sub> Cl | <sup>2</sup> H <sup>2</sup> 0          | C <sub>37</sub> H <sub>33</sub> O <sub>6</sub> N <u>2</u> Cl | C <sub>39</sub> H <sub>37</sub> O <sub>8</sub> N <sub>2</sub> Cl<br>C <sub>41</sub> H <sub>41</sub> O <sub>10</sub> N <sub>2</sub> Cl |            |
|                                        | щ                      | с<br>С<br>С                                                                                                                    | ້ວິ                              | ບິບ<br>ເບີບ                                                                                                                                                                                                                                         | ر               | •                                                        |                                                   | 61                   | J                                                  | did not react w<br>Found : S, 17.4.                                                                                                                                     | = 2-q $v$                                                     | -     | C <sub>16</sub> H<br>C <sub>16</sub> H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $C_{3}^{e}H_{2}$              | C <sub>29</sub> H2706N2C<br>C <sub>30</sub> H30N3I °<br>C <sub>31</sub> H330N3I °                                                |                       | Symmetrical trimethincyanine dyes : bis-[3-R-4-X-5-Y-2-oxazole]trimethincyanine perchlorates | mar.                                                              |                                                                  |                                        | 4·3 C <sub>3</sub>                                           |                                                                                                                                       |            |
| alts                                   | ce                     | ates                                                                                                                           | lates                            | N 61                                                                                                                                                                                                                                                | 61              | dles <sup>3</sup>                                        | Lemon-yenow needles<br>Yellow prisms <sup>2</sup> | Lemon-yellow needles | ellow 2                                            |                                                                                                                                                                         | = 0, A -                                                      |       | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               | 2·1<br>3·4<br>7·0                                                                                                                |                       | ıcyani                                                                                       | λ <sub>max.</sub><br>(MeOH, mμ) 10 <sup>-4</sup> ε <sub>max</sub> | 01 0                                                             | 0                                      | 4                                                            | 8-2<br>12-8                                                                                                                           |            |
| vinyl s                                | Appearance             | raw pl                                                                                                                         | mber p                           | eedles<br>eaflets                                                                                                                                                                                                                                   | -<br>موالعود    | sen nee                                                  | ellow I                                           | rellow 1             | cent ye                                            | ary sa<br>ight.                                                                                                                                                         |                                                               |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 ന                           | 01 00 1-                                                                                                                         | %.                    | methin                                                                                       | λmax.<br>OH, mµ                                                   | 460<br>500                                                       | 510(490i)                              | 504(486i)                                                    | 507(486i)<br>510(486i)                                                                                                                |            |
| Anilinovinyl salts                     | Ap                     | Bright straw plates                                                                                                            | Bright amber plates              | Yellow needles <sup>2</sup><br>Yellow leaflets <sup>2</sup>                                                                                                                                                                                         |                 | Olive-green needles                                      | Lemon-yenow n<br>Yellow prisms <sup>2</sup>       | Lemon-yellow needl   | Deliquescent yellow<br>Vellow needles <sup>2</sup> | quaternised with methyl toluene- $\phi$ -sulphonate. This quaternary salt <sup>2</sup> Fluoresced moderately in sunlight, intensely in ultra-violet light. <sup>3</sup> | ; (IX ;                                                       |       | $\substack{\text{(MeOH, } m\mu)\\430(415i)\\435}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 452<br>451                    | 458<br>470<br>450                                                                                                                | l, 22·1%.             | ole]tri                                                                                      | (Me                                                               |                                                                  | 510                                    | 50                                                           | 50                                                                                                                                    |            |
| 2                                      | M. p.                  |                                                                                                                                |                                  |                                                                                                                                                                                                                                                     | -               |                                                          |                                                   |                      |                                                    | This quitra-                                                                                                                                                            | ie dyes                                                       | ,     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | , v                                                                                                                              | Reqd. : ]             | 2-oxaz                                                                                       | ce                                                                | Orange needles (purple)<br>Crimson leaflets                      | •                                      | green)                                                       | (gold)                                                                                                                                |            |
| 4                                      |                        |                                                                                                                                | 185                              |                                                                                                                                                                                                                                                     | 166             |                                                          | 203                                               |                      |                                                    | nate.<br>Isely in                                                                                                                                                       | cyanir                                                        | ì     | Appearance<br>Mustard prisms<br>Orange needles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | : :                           | Orange prisms<br>Red needles<br>Orange needles                                                                                   |                       | -2-Y-                                                                                        | Appearance<br>(reflex)                                            | leadles                                                          | TOTTO                                  | risms (                                                      | orown<br>eaflets                                                                                                                      |            |
|                                        | - Yield                | <b>6</b><br>76                                                                                                                 | 09                               | 96<br>88<br>88                                                                                                                                                                                                                                      | 12              | 688                                                      | 96<br>96                                          | 26<br>7.5            | 7   6                                              | sulpho<br>t, inter                                                                                                                                                      | -2-Quinoline][3-R-4-X-5-Y-2-oxazole]methincyanine dyes (IX; n |       | Appearance<br>Mustard prisms<br>Orange needles<br>"<br>Orange prisms<br>Red needles<br>Orange needles<br>Orange needles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I, 21                         | R-4-X                                                                                                                            | AI<br>range 1         | range 1                                                                                      | Crimson leaflets<br>Orange                                        | Brown prisms (green)                                             | Orange-brown<br>Orange leaflets (gold) | omp.                                                         |                                                                                                                                       |            |
|                                        | Bath.<br>temp          | 140                                                                                                                            | 150                              | 130                                                                                                                                                                                                                                                 | 140             | 140                                                      | 150                                               | 140                  | 140                                                | uene-p                                                                                                                                                                  | azole]1                                                       | •     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                             | -                                                                                                                                | Found: I, 21.9.       | bis-[3-                                                                                      | р.<br>mp.)                                                        |                                                                  |                                        |                                                              |                                                                                                                                       | No decomp. |
|                                        | Reaction<br>time (hr.) | 0.5                                                                                                                            | - 01                             | 1.2                                                                                                                                                                                                                                                 | _               | 0.2                                                      |                                                   | 0.3<br>6             | 1                                                  | lol tol                                                                                                                                                                 | [-2-0x                                                        |       | FI I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 <b>6</b><br>227            | $270 \\ 290 \\ 271 \\ 271$                                                                                                       |                       | yes : l                                                                                      | M. p.<br>(decomp.)                                                | 226°                                                             | 260                                    | 242                                                          | 220 <b>•</b><br>237                                                                                                                   | 4          |
|                                        |                        | -                                                                                                                              |                                  |                                                                                                                                                                                                                                                     |                 |                                                          |                                                   |                      |                                                    | h metl<br>oderate                                                                                                                                                       | X-5-1                                                         | V:old | 40<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76<br>27                      | 45                                                                                                                               | <sup>b</sup> Decomp.  | vine d                                                                                       | Yield<br>(%)                                                      |                                                                  |                                        | 49                                                           | $10 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ $                                                                                    |            |
| hyl-<br>ts                             | Appear-<br>ance        | Prisms                                                                                                                         | Glass                            | Needles<br>Glass                                                                                                                                                                                                                                    | Solid *         | Gum<br>Noodloo                                           | Solid                                             | Glass<br>Prisms 1    | Solid<br>Prisms                                    | ed wit<br>sced m                                                                                                                                                        | 3-R-4-                                                        |       | from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | MeOH<br>H                                                                                                                        |                       | incyan                                                                                       | н,<br>Н                                                           |                                                                  | Et <sub>2</sub> O                      | C <sub>5</sub> H <sub>5</sub> N-EtOH-                        | Et <sub>2</sub> O                                                                                                                     |            |
| 2-metl<br>um sal                       | Bath-<br>temp.         |                                                                                                                                |                                  | 130                                                                                                                                                                                                                                                 |                 |                                                          |                                                   | 001                  |                                                    | aternis<br>Fluores                                                                                                                                                      | line][                                                        | ;     | Cryst. from<br>MeOH<br>EtOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MeOH<br>EtOH                  | C,H,N-MeOH<br>EtOH<br>Aq. EtOH                                                                                                   | <sup>a</sup> Darkens. | imeth                                                                                        | Cryst.<br>from                                                    | EtOH<br>MeOH                                                     | C,H,N-Et2O                             | H,N−J                                                        | EtOH<br>C <sub>5</sub> H <sub>5</sub> N-Et <sub>2</sub> O                                                                             |            |
| Prepn. of 2-methyl-<br>oxazolium salts |                        |                                                                                                                                |                                  |                                                                                                                                                                                                                                                     |                 |                                                          |                                                   |                      |                                                    |                                                                                                                                                                         | -Quinc                                                        | 2     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                                  | a                     | rical th                                                                                     |                                                                   | щΣ                                                               |                                        | C                                                            | ЦС                                                                                                                                    |            |
|                                        | Reaction<br>time (hr.) | u                                                                                                                              | 201                              | 1<br>1·5                                                                                                                                                                                                                                            | eı –            | 0                                                        | N 11                                              | 1.5<br>9             | 1                                                  | azole<br>chlora                                                                                                                                                         | [1-R'-2                                                       |       | Z-<br>CIO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | L CIO                                                                                                                            |                       | mmetr                                                                                        | Y                                                                 |                                                                  | o∙C <sub>6</sub> H₄                    |                                                              |                                                                                                                                       |            |
|                                        | X                      |                                                                                                                                |                                  | ·C <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                      | -               | yı<br>nyl                                                | 2                                                 |                      |                                                    | opylox<br>1 Per                                                                                                                                                         | 3. []                                                         |       | R <sup>,</sup><br>Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Εt                            | Me<br>Me                                                                                                                         |                       | <b>4</b> . Sy                                                                                |                                                                   | Нď                                                               | p-MeO·C                                | $\mathbf{Ph}$                                                | Ph<br>Ph                                                                                                                              |            |
|                                        |                        | НЦ                                                                                                                             | ΞΞÌ                              | Ph<br>p-MeO·C <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                           | Pra<br>9'_Fur   | 2'-Thienyl<br>2'-Thienyl                                 | -β-C <sub>10</sub> H <sub>7</sub>                 | r<br>La c            | 244                                                | di-n-pr<br>used.                                                                                                                                                        | TABLE                                                         |       | Et R<br>Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 먹먹<br>먹                       | ;草豆                                                                                                                              |                       | TABLE 4                                                                                      |                                                                   |                                                                  |                                        |                                                              | еH3                                                                                                                                   |            |
|                                        |                        |                                                                                                                                |                                  |                                                                                                                                                                                                                                                     |                 |                                                          |                                                   |                      | , H.                                               | ditions                                                                                                                                                                 | Ţ                                                             |       | $\overset{H}{\overset{H}{\overset{Pr^{n}}{\overset{Pr^{n}}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{\overset{Pr}{}}{}}}}}}}}}}$ | 멉                             | řh<br>Ph                                                                                                                         |                       | T,                                                                                           |                                                                   |                                                                  |                                        |                                                              | p-MeO•C <sub>6</sub> H <sub>4</sub><br>3 : 4 : 1-(MeO) <sub>2</sub> C <sub>6</sub> H <sub>3</sub>                                     |            |
|                                        | ×                      | H<br>Ph<br>Ph<br>H<br>H<br>Pra<br>2'-Furyl<br>Pr<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph |                                  | <ul> <li>D.C. H. P. D. J. S. S. C. H. P. D. S. C. H. P. P. S. C. H. P. P. S. Me<sub>3</sub>Z. P. J. A. Me<sub>3</sub>Z. P. J. J. (Me0)<sub>2</sub>C. H. P. R. 3</li> <li>J. (Me0)<sub>2</sub>C. H. P. P.</li></ul> |                 |                                                          |                                                   |                      | ,H,                                                | C <sub>6</sub> H₄<br>ſMe₃Z                                                                                                                                              |                                                               |       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                                                                                                                                  |                       | 4 : 1-(N                                                                                     |                                                                   |                                                                  |                                        |                                                              |                                                                                                                                       |            |
|                                        |                        |                                                                                                                                | r.⊓<br>p-MeO•C <sub>6</sub> H₄   |                                                                                                                                                                                                                                                     | Pra<br>9′_Furvi | 2 - Furyl<br>2'-Thienyl                                  | л<br>С <sub>10</sub> Н,                           | MeO.C.               | C H N                                              | * 2-Methyl-4: 5-di-n-pr<br>under the conditions used.                                                                                                                   |                                                               |       | ×<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ph<br>⊅-MeO•C <sub>6</sub> H₄ | <i>p</i> -NM <b>é</b> <sub>2</sub> ·C <sub>6</sub> H <sub>4</sub><br><i>p</i> -C <sub>6</sub> H <sub>4</sub> ·NMe <sub>3</sub> Z |                       |                                                                                              |                                                                   |                                                                  | H                                      | t Ph                                                         |                                                                                                                                       |            |
|                                        |                        | Нq                                                                                                                             | L 4                              | ΗH                                                                                                                                                                                                                                                  | Pr <sup>a</sup> | v òv F                                                   | 4 9<br>4 0                                        | 4.4                  | 44.                                                | -<br>                                                                                                                                                                   |                                                               |       | H<br>Tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μ<br>Γ<br>Γ                   | 4.4                                                                                                                              |                       |                                                                                              | R                                                                 | 펖뮾                                                               | чË                                     | Ę                                                            | 펖펖                                                                                                                                    |            |

TABLE 2. 2-2'-Anilinovinyloxazolium salts (VIII; R = Et,  $Z = p-C_6H_4Me\cdotSO_8^-$ ).

|                                                                    | Keqd.,<br>7-3-3-2-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    | Reqd.,<br>%                                                                 | 6-4<br>24-6                                                                                                            | 6.5<br>1-3                                                                                                                             | - 27                                                                                                                  |                                                                        | Reqd.,<br>%                         | 10-5<br>9-4<br>7-5                                                                                                                                                                                    | 8-2<br>6-2-0<br>6-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-2-0<br>8-0<br>8-0<br>8-0<br>8-0<br>8-0<br>8-0<br>8-0<br>8-0<br>8-0<br>8 | 22:3<br>7.7<br>5.9<br>5.9                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| le).                                                               | Found,<br>%<br>7.3<br>CI, 7.3<br>CI, 7.3<br>CI, 24:5<br>N, 7.3<br>22:4<br>5<br>1<br>CI, 0.1<br>%<br>CI, 0.1<br>%<br>CI, 0.1<br>%<br>CI, 0.1<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    | Found,<br>%                                                                 | S, 6-4<br>I, 24-3                                                                                                      | N,<br>8.0<br>8.0<br>8.0<br>8.0                                                                                                         | N, 4:2                                                                                                                | t-one).                                                                | Found,<br>%                         | ( <del></del>                                                                                                                                                                                         | X X X X<br>6 6 9 4 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.<br>27.                                                                                                                                                                                                                                                                                                                                                          |
| = 2-benzoxazole)                                                   | $\begin{array}{c} F_{0} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{2} \\$                                                                  |                                                    | l'ormula                                                                    | C <sub>20</sub> H <sub>21</sub> O <sub>3</sub> N <sub>2</sub> SI<br>C <sub>24</sub> H <sub>25</sub> ON <sub>2</sub> SI | C <sub>26</sub> H <sub>27</sub> O <sub>6</sub> N <sub>2</sub> SCI<br>C <sub>26</sub> H <sub>30</sub> O <sub>6</sub> N <sub>3</sub> SCI | C <sub>38</sub> H <sub>35</sub> O <sub>7</sub> N <u>2</u> Cl                                                          | 3-ethyl-2-thio-oxazolid-4-one).                                        | Formula                             | C <sub>12</sub> H <sub>14</sub> O <sub>3</sub> N <sub>2</sub> S<br>C <sub>18</sub> H <sub>18</sub> O <sub>3</sub> N <sub>2</sub> S<br>C <sub>19</sub> H <sub>20</sub> O <sub>4</sub> N <sub>2</sub> S | $C_{18}H_{18}O_3N_2S$<br>$C_{19}H_{20}O_4N_2S$<br>$C_{20}H_{18}O_5N_2S$<br>$C_{20}H_{18}O_5N_2S$<br>$C_{20}H_{18}O_3N_2S_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $C_{24}H_{26}O_{3}N_{2}S$<br>$C_{22}H_{46}O_{3}N_{2}S$<br>$C_{25}H_{26}O_{4}N_{2}S$<br>$C_{26}H_{26}O_{5}N_{2}S$                                                                                                                                                                                                                                                                                                            |
| n = 1, A                                                           | 10 <sup>-4 €</sup> m<br>9-1<br>5-5<br>5-7-9<br>8-3<br>7-9<br>8-3<br>7-9<br>7-9<br>-6<br>9-6<br>9-6<br>1-3<br>3-1<br>1-3<br>1-3<br>1-3<br>1-3<br>1-3<br>1-3<br>1-3<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4<br>1-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ; $n = 1$                                          | 10 <sup>-4</sup> €max.                                                      | 5.5<br>6-3                                                                                                             | 6.0<br>4.8                                                                                                                             | 8.1                                                                                                                   |                                                                        | 10 <sup>-4</sup> 6may               | <b>3</b> .0<br>5.4<br>6.9                                                                                                                                                                             | 5.5<br>6.4<br>4.4<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8-9<br>6-5                                                                                                                                                                                                                                                                                                                                                                                                                  |
| e dyes (IX;                                                        | λιπ.x.           (MeOH;           460(4444)           460(4444)           482(455           482(455)           482(457)           490(477)           490(477)           490(477)           490(477)           490(477)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne dyes (IX                                        | λ <sup>max.</sup><br>(MeOH, mμ) 10 <sup>-4</sup> ε <sub>max</sub> .         | 46!)<br>461(479i)                                                                                                      | 463<br>476                                                                                                                             | 504(482i)                                                                                                             | es (X; B ==                                                            | $\lambda_{\max}$ . (MeOH. m $\mu$ ) |                                                                                                                                                                                                       | 493(476i)<br>490<br>487<br>490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 490<br>500<br>491<br>490(478i)                                                                                                                                                                                                                                                                                                                                                                                              |
| .5-Y-2-Oxazole][3-ethyl-2-benzoxazole]trimethincyanine dyes (IX; n | Appearance (<br>Crange-brown leaflets<br>Bright-maroon plates<br>Orange-ted<br>Orange leaflets<br>Orange-brown<br>Red prisms<br>Red prisms<br>Red prisms<br>Red prisms<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red<br>Orange-red | Miscellaneous unsymmetrical carbocyanine dyes (1X; | Appearance                                                                  | Sepia needles<br>Orange-rod needles                                                                                    | Orange-brown leaflets<br>Orange prisms                                                                                                 | Dark orange                                                                                                           | $ethyloxazolin-2-ylidene-ethylidene)-2-thio-oxazolid-4-ones~({\rm X};$ | Appearance ()                       |                                                                                                                                                                                                       | Brick-red<br>Red-brown needles<br>Emerald-green prisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>232 Orange-red needles</li> <li>136 Brick-red</li> <li>229 Maroon prisms</li> <li>238 Orange prisms</li> <li>Light petroleum (b. p. 60-80°).</li> </ul>                                                                                                                                                                                                                                                            |
| ienzoxaz                                                           | M. p.<br>236° a<br>159 b<br>159 b<br>159 b<br>159 b<br>159 b<br>168 c<br>168 c<br>168 c<br>168 c<br>168 c<br>168 c<br>168 c<br>168 c<br>168 c<br>168 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uksun s                                            | M. p.                                                                       | 205" S<br>241 O                                                                                                        | _                                                                                                                                      | 210 D                                                                                                                 | vlidene)-                                                              | c.                                  | -                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t petrole                                                                                                                                                                                                                                                                                                                                                                                                                   |
| yl-2-l                                                             | Yield<br>(%)<br>33<br>33<br>33<br>33<br>33<br>71<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | поэн                                               | M                                                                           | 5 6 F                                                                                                                  | is is                                                                                                                                  | 6                                                                                                                     | le-eth                                                                 | M. p.                               | 149°<br>219<br>187                                                                                                                                                                                    | $200 \\ 219 \\ 213 \\ 248 \\ 248 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 232<br>136<br>229<br>229<br>238<br>238                                                                                                                                                                                                                                                                                                                                                                                      |
| le][3-eth                                                          | Cryst.       Vield         from       (%) $MeOH$ 33 $BEOH$ 33 $EtOH$ 71         "       71         "       71         "       71         "       71         "       71         "       71         "       71         "       71         "       71         "       71         "       71         "       71         "       16         "       40         "       40         "       40         "       Softens at 163°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Miscelle                                           | Yield<br>(%)                                                                | 07<br>07                                                                                                               | 58<br>26                                                                                                                               | 18                                                                                                                    | -2-yliden                                                              | Yield                               | 68<br>12                                                                                                                                                                                              | 34<br>    41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58<br>50<br>60<br>8                                                                                                                                                                                                                                                                                                                                                                                                         |
| · · · · ·                                                          | 2-<br>CIO4 B<br>CIO4 CIO4 B<br>CIO4 CIO4 B<br>CIO4 B<br>CIO4 B<br>CIO4 CIO4 B<br>CIO5 CIO4 B<br>CIO5 CIO4 B<br>CIO4 CIO4 CIO4 CIO4 CIO4 CIO4 CIO4 CIO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TABLE 6.                                           | Cryst.<br>from                                                              | EtOH-Et <sub>2</sub> O<br>EtOH                                                                                         | MeOH<br>EtOH                                                                                                                           | МеОН                                                                                                                  |                                                                        | (Cryst.<br>from                     | , Н<br>tOH<br>,                                                                                                                                                                                       | C <sub>6</sub> <sup>'</sup> H <sub>6</sub> <sup>-</sup> pet "<br>EtOH<br>C <sub>6</sub> H <sub>6</sub> -pet "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EtOH<br>C <sub>6</sub> H <sub>6</sub> -pet <sup>e</sup><br>,,                                                                                                                                                                                                                                                                                                                                                               |
| E 5. [3-R-4-X                                                      | $ \begin{array}{c} \Lambda \\ H \\ H \\ H \\ H \\ P \\ P \\ P \\ P \\ P \\ P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | ole][3-methyl-2-<br>cognine salls.<br>V                                     | 2-Furyl I<br>Ph I                                                                                                      | Ph CIO4<br>Ph CIO4                                                                                                                     | ienyl-5-phenyl-2-<br>diphenyl-2-ox-<br>ie perchlorate                                                                 | . 3-Ethyl-5-(3-                                                        | Υ                                   | н<br>н<br>н                                                                                                                                                                                           | Ph<br>p-MeO•C <sub>6</sub> H <sub>4</sub> C<br>2'-Furyl E<br>2'-Thienyl C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ph<br>A-Cı <sub>0</sub> H <sub>7</sub> E<br>Ph<br>Ph                                                                                                                                                                                                                                                                                                                                                                        |
| TABLE 5.                                                           | N<br>H<br>Ph<br>$P_{\rm P}$ MeO·C <sub>6</sub> H <sub>4</sub><br>H<br>H<br>H<br>H<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph<br>Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | [3-R-4-X-5-Y-Oxazole][3-methyl-2-<br>thiazoline]trimethinsymine salts,<br>Y | 2-Furyl 2<br>Ph                                                                                                        | <i>p</i> -MeO•C <sub>6</sub> H₄ H<br><i>p</i> -NMe₂•C <sub>6</sub> H₄ H                                                                | [3-Ethyl-4-p-methoxyphenyl-5-phenyl-2-<br>oxazole][3-ethyl-4: 5-diphenyl-2-ox-<br>azole][trimethincyanine perchlorate | TABLE 7.                                                               | X                                   | H<br>Ph<br><i>p</i> -MeO·C <sub>6</sub> H <sub>4</sub> F                                                                                                                                              | H<br>H<br>2'-Furyl<br>2'-Thienyl 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{l} \operatorname{Ph} & \operatorname{Ph} \\ \boldsymbol{\beta}^{-}\operatorname{C}_{10}\operatorname{H}, & \boldsymbol{\beta} \\ \boldsymbol{\beta}^{-}\operatorname{MeO}\cdot\operatorname{C}_{6}\operatorname{H}_{8} & \boldsymbol{\beta} \\ \boldsymbol{\beta}^{-}\operatorname{3}:4:1\text{-}(\operatorname{MeO})_{8}\operatorname{C}_{6}\operatorname{H}_{3} \end{array} \\ \end{array} \\ \end{array}$ |
|                                                                    | स्र चंद्रवद्यद्वद्वद्वद्वद्वद्व                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | R []3                                                                       |                                                                                                                        | 臣臣                                                                                                                                     | [3-Et.<br>0xa<br>azo                                                                                                  |                                                                        |                                     | H<br>Ph<br>P-Me(                                                                                                                                                                                      | Н<br>Н<br>2'-Fu<br>2'-Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ph<br>A-C <sub>10</sub> 1<br>3:4:                                                                                                                                                                                                                                                                                                                                                                                           |

| in).<br>Reqd.,<br>%<br>8.6<br>8.1<br>8.1<br>8.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8<br>8<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1                                                                                                                                                                                                                                            | 2.9                                                                                      | Reqd.,<br>%                                                                         | $13.8 \\ 12.9$                                                                                                                                  | 15.4<br>14.7<br>5.2<br>13.8                                                                                                                                                                                                                                                                                                         | 20.1<br>5.2                                                                                                                                                                                                            | 13.1<br>12.0                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iohydanto<br>Found,<br>N, 8.6<br>N, 8.3<br>N, 8.3<br>N, 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0, 2, 2, 3, 3, 3, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,                                                                                                                                                                                                                                                                              | ĵz Î                                                                                     | Found,<br>%                                                                         | S, 13·6<br>S, 13·0                                                                                                                              | S, 15.3<br>S, 14.6<br>S, 14.6<br>S, 13.9<br>S, 13.9                                                                                                                                                                                                                                                                                 | $\substack{ I, \\ N, \\ 5\cdot 3 }$                                                                                                                                                                                    | S, 12·9<br>S, 11· <b>9</b>                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C <sub>26</sub> H <sub>23</sub> O <sub>4</sub> N <sub>3</sub> S<br>C <sub>30</sub> H <sub>27</sub> O <sub>2</sub> N <sub>3</sub> S<br>C <sub>43</sub> H <sub>41</sub> O <sub>2</sub> N <sub>3</sub> S<br>C <sub>31</sub> H <sub>29</sub> O <sub>3</sub> N <sub>3</sub> S<br>C <sub>36</sub> H <sub>39</sub> O <sub>3</sub> N <sub>3</sub> S | C <sub>37</sub> H <sub>41</sub> O <sub>4</sub> N <sub>3</sub> S<br>Ligroin had b. p. 70- | 5) <i>-ones</i> (X).<br>Formula                                                     | C <sub>24</sub> H <sub>20</sub> O4N <sub>2</sub> S <sub>2</sub><br>C <sub>26</sub> H <sub>22</sub> O <sub>6</sub> N <sub>2</sub> S <sub>2</sub> | C <sub>20</sub> H <sub>18</sub> O4N <sub>2</sub> S2<br>C <sub>24</sub> H <sub>22</sub> O <sub>2</sub> N <sub>2</sub> S2<br>C <sub>32</sub> H <sub>26</sub> O <sub>2</sub> N <sub>2</sub> S2<br>C <sub>32</sub> H <sub>26</sub> O <sub>3</sub> N <sub>2</sub> S2<br>C <sub>55</sub> H <sub>24</sub> O <sub>3</sub> N <sub>2</sub> S2 | C <sub>28</sub> H <sub>32</sub> O <sub>2</sub> N <sub>3</sub> S <sub>2</sub> I<br>C <sub>32</sub> H <sub>26</sub> O <sub>2</sub> N <sub>2</sub> S <sub>2</sub>                                                         | C <sub>28</sub> H <sub>28</sub> O <sub>2</sub> N <sub>2</sub> S <sub>2</sub><br>C <sub>30</sub> H <sub>33</sub> O <sub>2</sub> N <sub>3</sub> S <sub>2</sub> |
| = 3-alky = | 6.4<br>9.0<br>9.2<br>0.2                                                                                                                                                                                                                                                                                                                    | 7.5<br>80°). I                                                                           | olid-4(and a<br>10 <sup>-4</sup> € <sub>max</sub> .                                 | 8.0<br>8.0                                                                                                                                      | <u>4.7</u><br>8.0                                                                                                                                                                                                                                                                                                                   | 32).<br>9·1<br>                                                                                                                                                                                                        | 4632).<br>6·7<br>                                                                                                                                            |
| $\eta_{S} * (X; B = \frac{\lambda_{max}}{\lambda_{max}}, (m_{\mu}, MeOH)$<br>( $m_{\mu}, MeOH$ )<br>489<br>489<br>505<br>506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                             | 504(483i)<br>um (b. p. 60-                                                               | ¢)-2- <i>thiothiazoli</i><br>λ <sub>max</sub> .<br>(mμ, MeOH) 10<br>4- <i>one</i> . | 512(i)<br>513(i)                                                                                                                                | 514(i)<br>521(i)<br>514(i)                                                                                                                                                                                                                                                                                                          | , J., 1952, 46<br>513(i)<br>530(i)                                                                                                                                                                                     | iott, J., 1952,<br>522(i)<br>525                                                                                                                             |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purple prisms<br>Orange prisms<br>Red<br>Maroon prisms<br>Orange needles                                                                                                                                                                                                                                                                    | 83 Orange-red $504(483i)$ 7.5<br>• Pet = light petroleum (b. p. $6080^{\circ}$ ).        | thylidene<br>othiazolid-                                                            |                                                                                                                                                 | id-4-one.                                                                                                                                                                                                                                                                                                                           | From 3-ethyl-2-thiothiazolid-5-one (Jeffreys and Knott, J., 1952, 4632).            233         Brown needles, green reflex         513(i)         9-1           10         247         Chocolate-brown         530(i) | 17 Ind Kr<br>80°)                                                                                                                                            |
| L-phenyl-;<br>M. p.<br>135°<br>210<br>206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $210 \\ 237 \\ 213 \\ 231 \\ 265 \\ 265 $                                                                                                                                                                                                                                                                                                   | 183<br>. • Pet                                                                           | t-2-ylidene-e<br>Appearance<br>ymethyl-2-thi                                        | leaflets<br>,,                                                                                                                                  | rom 3-ethyl-2-thiothiazol<br>Maroon needles<br>Red needles, blue reflex<br>Green leaflets<br>Maroon needles                                                                                                                                                                                                                         | <i>iiazolid-5-one</i> (Jeff<br>Brown needles, gr<br>Chocolate-brown                                                                                                                                                    | <i>viothiazolid-5-ove</i> (Jeffreys an<br>Red-bronze leaflets<br>Maroon needles, gold reflex<br>= light petroleum (b. p. 60-                                 |
| $\begin{array}{c} \text{Videne} \\ \text{Yield} \\ (\%) \\ (\%) \\ \frac{35}{67} \\ 29 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                          | 2,177,403                                                                                | loxazolin<br>3-carbox                                                               | Maroon leaflets<br>"                                                                                                                            | From 3-ethyl-2-i<br>Maroon needl<br>Red needles, 1<br>Green leaflets<br>Maroon needl                                                                                                                                                                                                                                                | <i>thiazolid-</i><br>Brown 1<br>Chocola                                                                                                                                                                                | <i>thiothiazo</i><br>Red-brc<br>Maroon<br>: = light                                                                                                          |
| <i>idene-ethy</i> ,<br>Cryst.<br>from <sup>a</sup><br>Ligroin <sup>a</sup><br>EtOAc-pet<br>C <sub>6</sub> H <sub>6</sub> -pet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MeOH<br>C <sub>6</sub> H <sub>6</sub> -pet<br>"                                                                                                                                                                                                                                                                                             | EtOH<br>d, U.S.P. 5                                                                      | e)-(3-ethyi<br>M. p.<br>From                                                        | $258^{\circ}$                                                                                                                                   | 211<br>231<br>225<br>205                                                                                                                                                                                                                                                                                                            | thyl-2-thio<br>233<br>247                                                                                                                                                                                              | slo <i>hexyl-2-th</i><br>286<br>286<br>• Pet                                                                                                                 |
| 0xazolin-2-yli<br>3-n-Alkyl<br>group<br>n-C <sub>7</sub> H <sub>15</sub><br>n-C <sub>7</sub> H <sub>15</sub><br>n-C <sub>7</sub> H <sub>15</sub><br>n-C <sub>7</sub> H <sub>15</sub><br>n-C <sub>7</sub> H <sub>15</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             | <b>n</b> -C <sub>7</sub> H <sub>15</sub> I<br>ooker's metho                              | <i>ll</i> -5(and 4<br>Yield<br>(%)                                                  | 40                                                                                                                                              | 70<br>51<br>82                                                                                                                                                                                                                                                                                                                      | From 3-e<br>                                                                                                                                                                                                           | From 3-cyc<br>                                                                                                                                               |
| (3-ethyloxaz<br>3-n-<br>850<br>n-C,<br>n-C,<br>n-C,<br>n-C,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                             | Ę                                                                                        | 04                                                                                  | EtOH<br>MeOH                                                                                                                                    | C <sub>6</sub> H <sub>6</sub> -pet<br>,,                                                                                                                                                                                                                                                                                            | EtOH<br>C <sub>6</sub> H <sub>6</sub> -pet                                                                                                                                                                             | C <sub>6</sub> H <sub>6</sub> -pet                                                                                                                           |
| -n- <i>Alkyl-</i> 5-(3-e<br>T<br>H<br>Ph<br><i>p</i> -MeO·C <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2'-Furyl<br>Ph<br>β-C <sub>10</sub> H,<br>Ph<br>Ph                                                                                                                                                                                                                                                                                          | l <sub>3</sub> Ph<br>bared accord                                                        | TABLE 9.<br>Y                                                                       | Ph<br>Ph                                                                                                                                        | 2'-Furyl<br>Ph<br>P-C <sub>10</sub> H,                                                                                                                                                                                                                                                                                              | Ph<br>β-C <sub>10</sub> H <sub>7</sub>                                                                                                                                                                                 | Ph<br>Ph                                                                                                                                                     |
| TABLE 8. 3-n-Alkyl-5-(3-ethy<br>X Y<br>Ph<br>MeO·C <sub>6</sub> H <sub>4</sub> H<br>H<br>Ph<br>Ph<br>Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2'-Furyl<br>Ph<br><i>P</i> -CioH <sub>7</sub><br><i>P</i> -MeO·C <sub>6</sub> H <sub>4</sub><br><i>P</i> -MeO·C <sub>6</sub> H <sub>4</sub>                                                                                                                                                                                                 | 3 : 4 : 1-(MeO) <u></u> 2C <sub>6</sub> H <sub>3</sub><br>* Prepa:                       | ×                                                                                   | Ph<br><i>p</i> -MeO•C <sub>6</sub> H <sub>4</sub>                                                                                               | 2'-Furyl<br>Ph<br>A-C <sub>10</sub> H,<br>A-MeO-C <sub>6</sub> H,                                                                                                                                                                                                                                                                   | p-C <sub>6</sub> H4.NMe2EtI<br>β-C <sub>10</sub> H7                                                                                                                                                                    | Ph<br>p-NMe2°C <sub>6</sub> H <sub>4</sub>                                                                                                                   |

# Jeffreys: Oxazole Cyanine and

| 1                                       |                                                                                                 |                                                                                            |                                                                                           |                                                                                               |                                                                                              | <i>j</i> , u                                                                                                          |                                                                                                    |                                                                                                       |                                                                                                                 |                                                                                                                                            |                                                                                                                                     |                                                              |
|-----------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Rend                                    | 6·8                                                                                             | 15.4                                                                                       | 14-7                                                                                      | 5.9                                                                                           | 9-4                                                                                          | 0-9                                                                                                                   | 6.0                                                                                                | 13.8                                                                                                  | ઝ<br>ઝ                                                                                                          | 7.3                                                                                                                                        | 8.3<br>3                                                                                                                            |                                                              |
| խությ                                   |                                                                                                 | 15.2                                                                                       | S, 14-5                                                                                   | 5.8                                                                                           | 9- <b>3</b>                                                                                  | 5.9                                                                                                                   | 5.9                                                                                                | 13.6                                                                                                  | 8<br>8                                                                                                          | 7.3                                                                                                                                        | د:<br>د:                                                                                                                            |                                                              |
| 101                                     | Ż                                                                                               | s,                                                                                         | s,                                                                                        | s,                                                                                            | ź                                                                                            | ź                                                                                                                     | ź                                                                                                  | ŝ                                                                                                     | ź                                                                                                               | 'n                                                                                                                                         | ź                                                                                                                                   |                                                              |
|                                         | Formula<br>C24H18O5N2                                                                           | $C_{20}H_{18}O_4N_2S_2$                                                                    | C <sub>24</sub> H <sub>22</sub> O <sub>2</sub> N <sub>2</sub> S <sub>2</sub>              | $C_{34}H_2 rO_2 N_3 S$                                                                        | $C_{29}H_{2\delta}O_2N_3$                                                                    | C <sub>2</sub> ,H <sub>2</sub> ,O <sub>3</sub> N <sub>3</sub> S,5EtOH                                                 | $C_{29}H_{24}O_4N_{2}$                                                                             | C25H24O3N2S2                                                                                          | $C_{30}H_{27}O_{3}N_{3}$                                                                                        | $C_{30}H_2 \gamma O_6 N_3 S$                                                                                                               | C <sub>28</sub> H <sub>29</sub> O <sub>4</sub> N <sub>3</sub> S                                                                     |                                                              |
| <b>č</b> ).                             | 10 <sup>-4</sup> € <sub>max</sub> .<br>7.5                                                      | 5.7                                                                                        | 7-7                                                                                       | 5.8<br>8                                                                                      | 5.0                                                                                          | 0-9                                                                                                                   | 8.3<br>10                                                                                          | 6.2                                                                                                   | 5.0                                                                                                             | 4.6                                                                                                                                        | 3.6                                                                                                                                 |                                                              |
| nine dyes (}                            | $(m\mu, meOH) = 10^{-4} \varepsilon_{max}.$<br>499(476p) 7.5                                    | 504(478i)                                                                                  | 502(481i)                                                                                 | 493                                                                                           | 449                                                                                          | <b>388(444i)</b>                                                                                                      | 501(474p)                                                                                          | 500(482i)                                                                                             | 452                                                                                                             | 450                                                                                                                                        | 442                                                                                                                                 | 6080°).                                                      |
| 10. Miscellaneous merocyanine dyes (X). | Appearance<br>Naroon leaflets                                                                   | Green needles                                                                              | Red needles                                                                               | Orange                                                                                        | Salmon-pink plates                                                                           | Orange-yellow needles                                                                                                 | Red needles                                                                                        | Maroon needles                                                                                        | Orange-red needles                                                                                              | Mustard prisms                                                                                                                             | Yellow needles                                                                                                                      | <sup>a</sup> Pet = Light petroleum (b. p. $60-80^{\circ}$ ). |
| 10. <i>A</i>                            | M. p.<br>205°                                                                                   | 166                                                                                        | 230                                                                                       | 203                                                                                           | 246                                                                                          | 163                                                                                                                   | 218<br>(softens<br>210)                                                                            | 194                                                                                                   | 191<br>(softens<br>132)                                                                                         | 298                                                                                                                                        | 275                                                                                                                                 | • Pet =                                                      |
| TABLE<br>Vield                          | 20<br>20                                                                                        | 1                                                                                          | 58                                                                                        |                                                                                               | 36                                                                                           | 53                                                                                                                    | 78                                                                                                 | 39                                                                                                    | 34                                                                                                              | 63                                                                                                                                         | 84                                                                                                                                  |                                                              |
| Crvst                                   | EtOH                                                                                            | MeOH                                                                                       | EtOH                                                                                      | C <sub>6</sub> H <sub>6</sub>                                                                 | EtOH                                                                                         | EtOH-Et <sub>2</sub> O                                                                                                | EtOH                                                                                               | C <sub>6</sub> H <sub>6</sub> -pet                                                                    | EtOH                                                                                                            | $PhNO_2$                                                                                                                                   | EtOH                                                                                                                                |                                                              |
|                                         | Dye<br>4-(3-Ethyl-4 : 5-di-2'-furyloxazolin-<br>2-ylidene-ethylidene)-2-phenyl-<br>oxazol-5-one | 4-(3-Ethyl-4:5-di-2'-furyloxazolin-<br>2-ylidene-ethylidene)-2-ethyl-<br>thiothiazol-5-one | 4-(3-Ethyl-4 : 5-diphenyloxazolin-<br>2-ylidene-ethylidene)-2-ethyl-<br>thiothiazol-5-one | 5-(3-Ethyl-4 : 5-diphenyloxazolin-<br>2-ylidene-ethylidene)-2-diphenyl-<br>aminothiazol-4-one | 4-(3-Ethyl-4:5-diphenyloxazolin-<br>2-ylidene-ethylidene)-3-methyl-<br>1-nhenvlhyrzzol-5-one | 1: 3.Diethylhexahydro-4: 6.diketo-<br>5.(3-ethyl-4: 5.diphenyloxazolin-<br>2-yidene-ethylidene)-2-thio-<br>nyrimidine | 4-(3-Ethyl-4-0-methoxyphenyl-5-<br>phenyloxazolin-2-ylidene-ethyl-<br>idene)-2-phenyloxazoli-5-one | 4-(3-Ethyl-4-p-methoxyphenyl-5-<br>phenyloxazolin-2-ylidene-ethyl-<br>idene)-2-ethylthiothiazol-5-one | 4-(3-Ethyl-4-p-methoxyphenyl-5-<br>phenyloxazolin-2-ylidene-ethyl-<br>idene)-3-methyl-1-phenylpyrazol-<br>5-one | 4-(3-Ethyl-4- <i>p</i> -methoxyphenyl-5-<br>phenyloxazolin-2-ylídene-ethyl-<br>idene)-3-methyl-1- <i>p</i> -sulpho-<br>phenylyurazol.5-one | 5-(3-Ethyl-1-p-methoxyphenyl-5-<br>phenyloxazolin-2-ylidene-ethyl-<br>idene)-1: 3-diethylhexahydro-<br>4: 6-diketo-2-thiopyrimidine |                                                              |

# [1952] meroCyanine Dyes, and Intermediates.

4831

crystallised from ethanol-ether as small orange prisms, m. p. 152° (Found: Cl, 7.1.  $C_{27}H_{27}O_5N_2Cl$  requires Cl, 7.2%). It had  $\lambda_{max}$  470 m $\mu$  in methanol.

4-p-Dimethylaminophenyl-2-p-dimethylaminostyryl-5-phenyloxazole Ethoperchlorate.—4-p-Dimethylaminophenyl-2-methyl-5-phenyloxazole ethoperchlorate (2.0 g.) and p-dimethylaminobenzaldehyde (0.8 g.) were dissolved in ethanol (10 c.c.) with a drop of piperidine. After 1 hour's heating on a steam-bath the solution was chilled, and the *dye* crystallised. It recrystallised from ethanol as red needles (orange reflex) (0.2 g.), m. p. 286° (Found : N, 7.7; Cl, 6.6.  $C_{29}H_{32}O_5N_3Cl$  requires N, 7.8; Cl, 6.6%). It had  $\lambda_{max}$  481 mµ in methanol.

[3-Ethyl-4: 5-diphenyl-2-oxazole][1-methyl-2-quinoline]methincyanine Iodide (Table 3).—2-Methyl-4: 5-diphenyloxazole ethotoluene-p-sulphonate (2·2 g., 1 mol.) and 2-methylthioquinoline methiodide (1·6 g., 1 mol.) with triethylamine (0·7 c.c., 1 mol.) in ethanol (15 c.c.) were heated for 15 minutes on the steam-bath. After chilling and filtration, the dye recrystallised from methanol as orange needles (2 g.), m. p. 286° (decomp.) (Found : I, 23·6.  $C_{28}H_{25}ON_2I$ requires I, 23·9%). The dyes in Table 3 were prepared similarly.

Bis-[3-ethyl-4: 5-diphenyl-2-oxazole]trimethincyanine Perchlorate (Table 4).—2-Methyl-4: 5diphenyloxazole ethotoluene-p-sulphonate (1.45 g., 1 mol.) and 2-2'-acetanilidovinyl-4: 5-diphenyloxazole ethotoluene-p-sulphonate [prepared from the 2-2'-anilinovinyl compound (1.79 g., 1 mol.) and acetic anhydride] with triethylamine (0.5 c.c.) in ethanol (12 c.c.) were heated for 1 hour on the steam-bath. The solution was poured into aqueous potassium perchlorate. The dye was filtered off, washed with a little ethanol, and recrystallised from pyridine-ethanol-ether as brown prisms (green reflex) (0.7 g.), m. p. 242° (decomp.) (Found: N, 4.4.  $C_{37}H_{33}O_6N_2Cl$  requires N, 4.4%). It had  $\lambda_{max}$  507 mµ in methanol, with an inflection at 486 mµ. The dyes in Tables 4, 5, and 6 were prepared by the same method.

3-Ethyl-5-(3-ethyl-4: 5-diphenyloxazolin-2-ylidene-ethylidene)-2-thio-oxazolid-4-one (Table 7). 2-2'-Acetanilidovinyl-4: 5-diphenyloxazole ethotoluene-p-sulphonate [prepared from the 2-2'-anilinovinyl intermediate (2.68 g., 1 mol.) and excess of acetic anhydride] and 3-ethyl-2-thio-oxazolid-4-one (Ahlqvist, J. pr. Chem., 1919, 99, 60) (0.73 g., 1 mol.) with triethylamine (0.7 c.c.) in ethanol (15 c.c.) were refluxed for 15 minutes (cf. Brooker, U.S.P. 2,177,401). The solution was then chilled and filtered, and the dye washed with a little ethanol and crystallised from ethanol as long orange-red needles, m. p. 232° (Found : S, 7.8.  $C_{24}H_{22}O_3N_2S$  requires S, 7.7%).

The *dyes* in Tables, 7, 8, 9, and 10 were prepared similarly. The *dyes* in Table 10 possessing a 2-ethylthiothiazol-5-one nucleus were prepared either by the above method or from the 4:5-substituted 2-methyloxazole quaternary salt and 4-ethoxymethylene-2-ethylthiothiazol-5-one (cf. Cook, Harris, and Shaw, J., 1949, 1435; Aubert, Knott, and Williams, J., 1951, 2185).

In Tables 3—10, "i" after the absorption maximum indicates an inflection, and in Table 10 "p" indicates a minor peak.

The author thanks Mrs. M. E. Turner and Miss M. E. Cole for carrying out absorption measurements, and Mr. A. Pilbeam for the preparation of intermediates.

Research Laboratories, Kodak Limited, Harrow, Middlesex.

[Received, June 6th, 1952.]